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By representing the desired dependences for an arbitrary dissociating gas in terms 
of the parameters p and T, expressions are obtained in analytic form for the heat 
drop in the turbine and its stages. 

fer, 
The equation for equilibrium flow of dissociating gas, taking nonideality, energy trans- 
and friction into account, will be considered. 

I. To derive general dependences with an arbitrary equation of state, the generalized 
Bernoulli equation is used [1], in t h e  form 
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The equation of state for a dissociating gas is written in general form 

R pv = Zef T, 

where Zef takes account both of the dissociation factor and of the nonideality of the gas. 
Equation (3) shows that the product pv is a function of p and T 

Hence 

pv = f (p, T). 

O[ dp = [ O (pv) ] dp = p dp + vdp. 
r [ O p  Jr  r 

Substituting vdp = dp/p into Eq. (1) then gives 

d 2 + d p - - p  
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The result of differentiating Eq. (3) is 

r ~pZ 
Introducing the notation 
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(5) is written in the form 
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The thermodynamic differential equation is chosen in the form 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

M. Azizbekov Azerbaidzhan Institute of Petroleum and Chemistry, Baku. Translated from 
Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 6, pp. 982-987, June~ 1982. Original article 
submitted March 30, 1981. 

0022-0841/82/4206-0665507.50 �9 1982 Plenum Publishing Corporation 665 



On the basis of Eq. (3), 

TdS=CpdT--T(O--~T)pd p. (9) 

the following relation may be written 

~-  = ~ p  z~f + T (lo) 
p t, aT ] p l  

or after introducing the notation 
0 

co = z~f + 7 \ - g f - /  , (11) 

av = ~ (o. (12) 

The thermodynamic differential equation is known in the form 

( O r )  dp. (13) TdS----CpdT-- - -~  , 

Simultaneous solution of Eqs. (9) and (12) gives the expression 

dp 1 CpdT-- TdS 
p ~o TR/~ 

which leads, when substituted into Eq. (8), to the result 
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The quantity m is related to the isobaric specific heat and the temperature index of the 
adiabatic. As is known [2, 3] 

(0p)  =__ k,o___p 
v ' ( 1 5 )  

(16) 

But 

Then, taking Eq. (I0) into account, it is found that 

= Cp hr--I (18) 
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In the light of the thermodynamic equation 

TdS = dh dp (19) 
P 

and of Eq. (18), Eq. (14) may be rewritten in the form 

e .  2 + [ o~ ) en + - -  - -  n e r - -  - -  : e h - -  + eLt~oh + eCf~ = O. (20)  
\ Op ]r ~ kr- -1  C~ p 

As is known, the total amount of heat dQ = dQsu p + dQfr, while dQfr = dLfr. 

The expression for the first law of thermodynamics applicable to gas moving with respect 
to the coordinates is written in the form 

w2 
dQ -- dh .3c d ~ -I- dLtech -~" dLfr 

or when Eq. (i) is taken into account 

dh dp _ dQ. (21) 
P 
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Substituting Eq. (21) into Eq. (20) gives 

w z R kr ( dQ ~ , § 2 4 7  r O. (22) d + f a l l  dp+ - -  .v . . . .  

2 k ap )r ~ kT--1 \ Cp ) 
The quantities ~ and kT/(kT -- I) change insignificantly in the course of gas expansion, and 
therefore their mean values may be used in the integration. For convenience of notation, the 
averaging bar above kT/(k T - I) is omitted. Integrating Eq. (22) gives 
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In the absence of heat supply in all cases (Q ffi 0), forms of Eq. (23) appropriate for 
the nozzle network, working blades, and turbine as a whole, with the corresponding indices: 
for the nozzle network (Ltech = 0) 

1 
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for the working blades of the stages 
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For turbines, wl and wa in Eq. (23) may be understood to  mean, respectively, the velocity 
of gas supplied to the turbine and at the turbine outlet. Taking wa = wl [4], and denoting 
the gas parameters before reaching the turbine by the subscript 0 and those at the turbine 
outlet by 2, the following equation is written 

2 
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For the further manipulations, the prime need is to elucidate the result of integrating 
the partical derivative of the function f with respect to the pressure, at constant tempera- 
ture. 

2. To discover the integral 'I dp , the notation y = pv = f(p, T) is introduced and, 
T 

hence, the following expression is obtained 
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From Eq. (12) 

Writing p(3v/3T)p a s  

R/~ /, 
[a (pv) /aT]p ,  i t  fo l lows that  

a(p0 ] = R 
aT jp F 

(28) 
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or 
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Taking Eq. (29) into account, Eq. (27) is written in the form 
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Using the Lagrange formula, in which a relation is established between the increment of 
the function f(Ta) -- f(T~) and the increment of the argument (T2 -- T~), Eq. (28) leads, after 
transformations, to the relation 

R - 

(pV)T~ -- (pV)Tx : ~ (T 2 -- T1) (31) 

or 

Substituting Eq. 

R _ 
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(32) into Eq. (30) gives 
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Appropriate transformations lead to the expression 

2 

1 

(34) 

where (Zaef)T, is assumed at pressure pa but the same initial temperature T~ [2]. 

3. To determine the drop in heat and the work done by the gas, the appropriate equations 
are obtained by substituting Eq. (34) successively into Eqs. (24), (25), and (26): the drop in 
heat corresponding to real expansion of the gas in the nozzle network 

( T 1 )  R NN (35) hN__ w 2 --- Wo 2 R kr qT o 1 - -  - -  To [(Z, ef)ro - -  (Zoef)ro] - -  Lfr , 
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the work of i kg per gas at the working blades 
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When Lfr = 0, a process with a reversible adiabatic, i.e., on isoentropic process, will occur. 
Writing for the isoentropic curves an equation in terms of the temperature coefficient K T in 
the form 

Tat = (  Px ~ (kT-1) /hr  Tl.___!_t = ( P~ ) (hr- ' , /hr T~___.L_ ( Pz I (kT-I)/kT 
To ~ Po ] ' T1 \ P a l  ' To \ P o /  ' (38) 

the following relations are obtained: isoentropic or available drop in heat in the nozzle 
network 

baN= " __  2 ~ kr-- I Po I ]~ 

(39) 
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the work developed by the vapor flux at the working blades and equivalent to isoentropic ex- 
pansion of the gas 

- -  ~T~ [ 1-- ] w2t-- w, 
(L0)wB = kr--1 \ Px ] ----~-Tl[(Z2e~r'--(Zlef)r'] 2 ; (40) 

the isoentropic or available drop in heat in the turbine 

k r - - 1  \ Po l 

In d e r i v i n g  Eqs. (39) - (41) ,  a l l  the  t r a n s f o r m a t i o n s ,  from the  ve ry  beg inn ing ,  have been 
performed with a view to obtaining dependences expressed in terms of p on T. This is done 
for the purpose of using the temperature index of the adiabatic k T in subsequent work. In 
view of the slight change in (k T -- 1)/kT, this leads to great expediency in the calculations, 
and ensures sufficient accuracy in the integrations. 

Use of Eqs. (39)- (41) requires a knowledge of (k T --l)/k T. As is evident from Eqs. (18) 
and (ii), this entails, above all, finding the expression for the partial derivative (~zef/ 
~T)p. The coefficient Zef is the product of two factors, i.e., Zef ~ Ze, where Z is the eo- 
efficient of compressibility, taking the nonideality of the gas into account, and the coef- 
ficient expresses the total number of moles as a result of the chemical reactions of the given 
dissociating gas. 

NOTATION 

p, v, T, p, volume, temperature, and density of the gas; R, universal gas constant; h, 
enthalpy; kT, temperature coefficient of adiabatic or dissociating gas; k, adiabatic coef- 
ficient of perfect gas; ~, molecular mass; Cp, Cv, isobaric and isochoric mass specific heat; 
Zef , effective coefficient taking the influence both of dissociation and of nonideality of 
the gas into account. 
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